Birzelt universir
 DEPARTMENT OF COMPUTER SYSTEM ENGINEERING

Digital Integrated Circuits - ENCS333

Dr. Khader Mohammad Lecture \#1_part2 Introduction

 Integrated-Circuit Devices and Modeling
PCB, SOC , Chip , Packages, Wafer

Scaling

- Technology shrinks by 0.7/generation
- With every generation can integrate $2 x$ more
- functions per chip; chip cost does not increase significantly
- Cost of a function decreases by $2 x$
- How to design chips with more and more functions?
- Design engineering population does not double every two years...
- Need to understand different levels of abstraction

Wafer and Die (2)

- Thickness 275um - 925um
- Diameter up to 450 mm
- Wafer is cut from metal-cast of single crystal silicon.

https://www.youtube.com/watch?v=qm67wbB5Gml https://www.youtube.com/watch?v=aWVywhzuHnQ https://www.youtube.com/watch?v=Q5paWn7bFg4\&t=4s

Producing a Wafer

Watch : Sand to silicon

Producing a Wafer (2)

IC Definition

- Integrated circuits (IC) is a complex set of electronic components and their interconnections etched on a chip.

Basic Elements of Electronic Circuits

| Transistor - is the switch |
| :--- | :--- |
| Diode - is the rectifier |
| Capasistor - slows down electricity - stores electricity |
| Inductor - determines the magnitude
 of the electromagnetic force |
| Connecting them with interconnects,
 an IC is obtained. |

*The elements, being prepared by discrete technology, are shown.

Types of IC Elements

Useful

Parasitic

N - type semiconductor
 Semiconductor $_{P \text { - type semiconductor }}$

The p-n junction is the basis for diodes, certain transistors ,and other devices.

Semiconductor- Diods

Reverse bias of a pn junction

Forward bias of a pn junction

Reverse
bias

What are P-type and N-type?

- Semiconductors are classified in to P-type and N-type semiconductor
- P-type: A P-type material is one in which holes are majority carriers i.e. they are positively charged materials (++++)
- N-type: A N-type material is one in which electrons are majority charge carriers i.e. they are negatively charged materials (-----)

Basic Element of IC

- CMOS Transistor is a switch

How Is It Done? (devices)

MOS Transistors:

What's a "C" MOS?

How Is It Done? (devices)

MOS Transistor:

p-doped semiconductor substrate

How Is It Done? (devices)

MOS Transistor:

How Is It Done? (devices)

NMOS Transistor with gate:

How Is It Done? (devices)

NMOS Transistor with bias voltages:

How Is It Done? (devices)

NMOS Transistor with bias voltages:

How Is It Done? (devices)

NMOS Transistor with bias voltages:

How Is It Done? (devices)

PMOS Transistor with bias voltages:

How Is It Done? (devices)

MOS Transistors:

CMOS Inverter = one of each

How Is It Done? (devices)

MOS Transistors:

CMOS Inverter = one of each

CMOS Transistor - Types and Symbols

NMOS Enhancement

PMOS Enhancement

NMOS with Bulk Contact

PMOS with Bulk Contact

Switch Model of NMOS

 Transistor

Sizes of IC Components

- IC components and interconnects have very small sizes
- For micron technology, a million or more switches on a single chip are obtained.
- For contemporary technologies, up to a dozen of billions switches on a single chip are obtained.

Transistor

150000 transistors

Dozen of billions transistors

IC as a Multi Layer Structure

IC as a Multi Layer Structure (2)

IC as a Multi Layer Structure (3)

IC as a Multi Layer Structure (4)

IC as a Multi Layer Structure (5)

IC as a Multi Layer Structure (6)

IC as a Multi Layer Structure (7)

Under the microscope

Interconnects have roughness and are not smooth

IC as a Multi Layer Structure (8)

- Intel 22nm trigate SoC process
- up to 12 metal layers,
- up to six $1 \times$ layers
- extra $3 \times$ level
- only one $4 \times$ level
- $6 \mu \mathrm{~m}$ thick top metal

Source: chipworks.com, "Intel details 22 nm trigate SoC process at IEDM"

NMOS and PMOS Transistor Structures

Concepts of the Circuit and Layout

Circuit

S

Resulting structure in manufactured IC

Circuit and Layout Editors

IC Component Types

- Input/Output (I/O) Cells
- Implement the connection between IC inner circuitry and external environment (PCB)
- Digital Standard Cells
- Basic cells performing simplest functions (e.g. AND, OR, etc.) or more complex functions (Multiplexers, Latches, Flip-Flops, etc.) used as building blocks for large digital circuits
- Intellectual Property (IP) Blocks
- Large blocks performing completed functions (DAC, ADC, PLL, etc), used in large designs

IC Component Types (2)

- Digital Standard Cells
- Basic cells performing simplest functions (e.g. AND, OR, etc.) or more complex functions (Multiplexers, Latches, Flip-Flops, etc.) used as building blocks for large digital circuits
- Intellectual Property (IP) Blocks
- Large blocks performing completed functions (DAC, ADC, PLL, etc), used in large designs
- Input/Output (l/O) Cells
- Implement the connection between IC inner circuitry and external environment (PCB)
- Digital ICs
- Large ICs (e.g. processor, GPU, etc.), distributed to end-users

IP Example

PLL

Circuit

Layout

Real IC Example

IC Classification : Signal Type

Reason of Digital Signals

Digital - noise immune

IC Classification

History and Evolution of The IC Industry (Mechanical Calculators)

History and Evolution of The IC

 ndustry (Mechanical Logic Gates)

History and Evolution of The IC Industry (Lamp Computers)

Vacuum lamp

- Large size
- High heat removal
- Low reliability

History and Evolution of The IC Industry (Lamp Computers) (2)

History and Evolution of The IC Industry (Lamp Computers) (3)

History and Evolution of The IC Industry (Lamp Computers) (4)

- 1946. The first electronic computers were created which operated by vacuum lamps.

History and Evolution of The IC Industry (Transistor Computers)

- 1948. The first transistor was created in Bell Labs

The first transistor created in Bell Labs

History and Evolution of The IC Industry (Transistor Computers)

(2)

- 1954. The first fully transistor computer was developed

Examples of separate semiconductor transistors of 1950s

A block of fully transistor computer

An example of fully transistor computer

History and Evolution of The IC Industry (IC Based Computers)

- 1959. The first integrated circuit was created

The first commercial IC which in 1959 was developed by the British architecture Robert

Noyce and manufactured by "Texas
Instruments"

3-input Gate, which in 1966 was manufactured by Motorola

- The first ICs contained only several transistors
- The first ICs were manufactured in small quantities as they were rather expensive

History and Evolution of The IC Industry (IC Based Computers) (2)

History and Evolution of The IC Industry (IC Based Computers) (3)

ICs with small degree of integration (up to 1000 transistors)

History and Evolution of The IC Industry (IC Based Computers)

Blocks of IC based computers

History and Evolution of The IC Industry (IC Based Computers)
 (5)

History and Evolution of The IC Industry (IC Based Computers) (6)

History and Evolution of The IC Industry (IC Based Computers)

History and Evolution of The IC

 Industry (IC Based Computers)

History and Evolution of The IC Industry (IC Based Computers)

History and Evolution of The IC Industry (IC Based Computers) (10)

- 1971. The first microprocessor was created

- Created in 1971
- Contained 1000 transistors
- 1 MHz operation

Intel 4004 Microprocessor

History and Evolution of The IC Industry (IC Based Computers) (11)

Calculators have been produced which exceeded the calculation power of the previous calculators for several times

History and Evolution of The IC

Industry

- 1965. Moore's law was discovered, according to which the number of transistors in ICs doubles every 18 months

History and Evolution of The IC

 Industry (2)- 1983. Apple created the first PC

An example of the first PC

History and Evolution of The IC Industry (3)

- 1983. Other companies also created PCs

History and Evolution of The IC Industry (4)
2010. Xeon 7500

Technology: 45nm Contains 2.3 bln transistors
$8 \times 2.6 \mathrm{GHz}$ operation
2011. Six-Core Core i7

Technology: 32nm Contains 2.7 bln transistors
$6 \times 3.6 \mathrm{GHz}$ operation
2013. Xbox One SoC

- Technology: 32nm Contains 5 bln transistors
- $8 \times 2.6 \mathrm{GHz}$ operation

History and Evolution of The IC

 Industry (5)- Contemporary integrated circuits

- Contain several dozen billions of transistors
- Operate at dozens of

History and Evolution of The IC
 - clock frequency doubles every ${ }_{2}$ (6eads

Clock frequency (MHz)

History and Evolution of The IC

 Industry (7)- Die size grows by 14% every year

History and Evolution of The IC

 Industry (8)- Powers increase about ten times every 3 years

History and Evolution of The IC

 Industry (9)- Power densities increase twice every year

History and Evolution of The IC

 Industry (10)- The minimum length of gate is divided by two every 5.4 years

Cost of Transistor

- The cost of transistors reduce twice every 1.5 years

History and Evolution of The IC

 Industry (11)- Semiconductor Industry Association (SIA) Roadmap

| Date | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 1 0}$ | 2016 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Technology (nm) | 180 | 65 | 28 | 7 |
| Minimum mask count | $22 / 24$ | 25 | 27 | $29 / 30$ |
| Wafer diameter (mm) | 200 | 400 | 400 | 450 |
| Memory samples (bits) | 1 G | 8 G | 32 G | 10 T |
| Transistors/cm ${ }^{2}$ | 6.2 M | 180 M | 330 M | 1.5 G |
| Maximum number of metal layers | $6-7$ | 9 | 9 | 12 |
| Clock frequency (MHz) | 1250 | 3200 | 5200 | 20000 |
| IC sizes (mm²) | 400 | 596 | 699 | 750 |
| Power supply (V) | $1.5-1.6$ | $0.8-1.2$ | $1.2-1$ | $0.37-0.42$ |
| Maximum power (W) | 90 | 150 | 171 | 183 |
| Number of pins | 700 | 1957 | 2734 | 3350 |

Technology Roadmap

